
Parser of Input Data in Reliability Analysis

based on Logical Differential Calculus

Patrik Rusnak

Abstract—One of the principal data that are used as an input of many algorithms in reliability analysis is structure

function, which defines the correlation between the system performance and performance of its components. It has

been shown in several papers that this function can also be viewed as a Multiple-Valued Logic (MVL) function.

This idea allows us to use methods related to the investigation of MVL functions in reliability analysis. One of

them is logical differential calculus, which can be used to find circumstances under which degradation of a specific

system component results in a decrease in system operation. MVL functions can be represented in several ways,

e.g., truth table, graphic form, symbolic form. Computer processing of MVL functions requires a specific parser

that is able to transform a given representation of a MVL function into a form that can be easily processed on the

computer. In this paper, the symbolic representation is considered primarily. Parsing symbolic expressions can be

done using several universal algorithms. One of them is shunting-yard algorithm invented by Edsger Dijkstra.

Implementation of this algorithm for parsing MVL functions but also general mathematical expressions is

presented in this paper.

Keywords—reliability, logical differential calculus, shunting-yard algorithm.

I. INTRODUCTION

Reliability is an important characteristic of many, not only technical, systems. One of the

current issues of reliability analysis is investigation of complex systems [1]. Such systems are

composed of many components that are very different in their behavior. Typical examples of

complex systems are healthcare systems, which consist of components of different nature that

can be classified as hardware, software, and human factor [2], or distribution networks, which

are composed of hardware elements with very different behavior [3]. Investigation of such

systems requires development of new methods that take this diversity into account. One of the

possible ways of how this diversity can be modeled is application of multi-state models.

A multi-state model of a system allows defining several performance levels at which the

system or its components can operate. These levels are known as system/components states. A

map that defines the dependency between components states and state of the system is known

as structure function, and it has the following form [4]:

 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙): {0,1, … , 𝑚 − 1}𝑛 → {0,1, … , 𝑚 − 1}, (1)

where 𝑛 denotes number of system components, 𝑚 agrees with the number of system/

components states (where state 0 means complete failure while 𝑚 − 1 agrees with perfect

functioning), 𝑥𝑖 is a variable representing state of the 𝑖-th system component, and 𝒙 =
(𝑥1, 𝑥2, … , 𝑥𝑛) is a vector of components states (state vector).

The definition of the structure function agrees with the formal definition of Multiple-Valued

Logic (MVL) function. This fact allows using some tools related to the analysis of MVL

functions in reliability analysis of systems modeled using multi-state approach [5]. One of these

tools is logical differential calculus.

 Logical differential calculus has been developed for investigation of dynamic properties of

MVL functions. Its central term is logic derivative. Several types of logic derivatives exists [6]

but, in reliability analysis, the most useful one is Direct Partial Logic Derivative (DPLD). With

P. Rusnak, University of Zilina, Faculty of Management Science and Informatics, Zilina, Slovakia ().

Central European Researchers Journal, Vol.2 Issue 2

CERES ©2016 11

respect to MVL function 𝜙(𝒙), this derivative is defined as follows [6]:

𝜕𝜙(𝑗 → ℎ) 𝜕𝑥𝑖(𝑠 → 𝑟)⁄ = {

1, if 𝜙(𝑠𝑖 , 𝒙) = 𝑗 AND 𝜙(𝑟𝑖, 𝒙) = ℎ
0, otherwise

,

for 𝑠, 𝑟, 𝑗, ℎ ∈ {0,1, … , 𝑚 − 1}, 𝑠 ≠ 𝑟, 𝑗 ≠ ℎ,
 (2)

where (𝑎𝑖, 𝒙) = (𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑎, 𝑥𝑖+1, … , 𝑥𝑛) for 𝑎 ∈ {𝑠, 𝑟}. As we can see, a DPLD allows

identifying situations in which a given change of a MVL variable results in a given change of

the investigated MVL function. In reliability analysis, this permits finding state vectors at which

degradation (improvement) of component 𝑖 from state 𝑠 to 𝑟 results in degradation

(improvement) of system state from 𝑗 to ℎ. Knowledge of such state vectors plays a key role in

many fields of reliability analysis because it allows evaluating influence of a considered

component on system operation, what can be used in optimization of system reliability or in

planning system maintenance. Theoretical background for these ideas has been developed in

several works. In [5, 7], it has been shown how DPLDs can be used to investigate importance

of individual system components or their states. Works [8, 9] presented application of logical

differential calculus in finding minimal scenarios whose occurrence results in system

degradation (improvement).

The aforementioned papers have introduced a complex framework for reliability analysis

based on logical differential calculus. However, the detailed computer implementation of that

framework has not yet been considered. This problem is considered in this paper. Our goal is

to develop a complex tool that will implement all of the methods proposed in the previously

mentioned papers. The tool has to be efficient and universal, i.e. it has to be able to run

efficiently on any type of input data. In our case, the input data is a structure function

represented using a MVL function. MVL function can be expressed in many forms, e.g., tabular

or symbolic forms. If we want to work with symbolic forms, then we need a parser that will be

able to transform symbolic expression in the form that can be processed on a computer. One of

the possible solutions to this problem is use of shunting-yard algorithm invented by Edsger

Dijkstra [10, 11]. Practical implementation of this algorithm is considered in the rest of the

paper.

II. SHUNTING-YARD ALGORITHM

The main principle of the shunting-yard algorithm is to process mathematical expressions

specified in infix notation (e.g.: 23 + 4 ∗ 5) to the form of a reverse polish notation (i.e., 23 ∧
45 ∗ +) [12, 13]. In our implementation of this algorithm, we will use two stacks: the first stack

named output stack will store the output set of tokens, the second stack named temporary stack

will store functions, operators, parentheses, and function arguments separators to maintain the

priority of every operation.

Token is a pair consisting of a token name and an optional attribute value. The token name is

an abstract symbol representing a kind of lexical unit, e.g., a particular keyword, or a sequence

of input characters denoting an identifier. The token names are the input symbols that the parser

processes. We will often refer to a token by its token name [12].

The stack used in the shunting-yard algorithm is an abstract data type, which is a collection

of elements with two principal operations: push, which adds an element to the collection, and

pop, which removes the last element that has not been removed. Additionally, a peek operation

may be defined, which gives access to the first element of the stack without modifying it. The

order in which elements are removed from the stack (last in, first out) is the basis for its

alternative name LIFO [14].

The algorithm will recognize all tokens in input text and insert them into one of the two stacks

by following these rules:

Central European Researchers Journal, Vol.2 Issue 2

12 CERES ©2016

 If the token is a number or constant, then push it onto the output stack.

 If the token is an operation, then push it onto the temporary stack. But before that

happens, you need to check the priority of the operation on the top. If on the top of

the temporary stack is operation with higher or equal priority and inserting operation

is left associative or when inserting operation is right associative and on the top of the

temporary stack is operation with higher priority, then the operation at the top is pulled

from the temporary stack, and it is pushed to the output stack. This checking process

is repeated, until checking condition is no longer valid or the temporary stack is

empty.

 If the token is a function token, then push it onto the output stack. However, when

token is a function parameters separator, then tokens from the temporary stack are

popped and pushed to the output stack until at the top of the temporary stack is the

beginning of the function. If the beginning of the function is not found, then the

function and the input text are invalid.

 If the token is a left parenthesis, then push it onto the output stack. But if the token is

a right parenthesis, then tokens from the temporary stack are popped and pushed to

the output stack until at the top of the temporary stack is a left parenthesis. Pop the

left parenthesis from the temporary stack, but not onto the output stack. If the

temporary stack runs out without finding a left parenthesis, then there are mismatched

parentheses.

 When there are no more tokens to read, pop all tokens from the temporary stack and

push them to the output stack.

An illustrative example of parsing input text using the shunting-yard algorithm can be seen

in Fig. 1 where input string 2 ∧ 3 + 4 ∗ 5 is parsed.

Fig. 1 Illustration of the shunting-yard algorithm

Central European Researchers Journal, Vol.2 Issue 2

CERES ©2016 13

III. BUILDING MULTI-WAY TREE

After we successfully execute shunting-yard algorithm, we get all the tokens in reverse polish

notation in the output stack. But if we want to perform some specific action with output stack,

e.g., symbolic computations such as simplification, then it will be difficult. We need to figure

out a better way to keep output tokens and take advantage from the output stack. We concluded

that the best solution will be in building multi-way tree from the output stack.

A tree is an abstract data type or data structure that implements this abstract data type. A tree

data structure can be defined recursively as a collection of nodes (starting at a root node), where

each node is a data structure consisting of a value, together with a list of references to nodes

(the "children"), with the constraints that no reference is duplicated, and none points to the root

[14].

Building a multi-way tree is performed by algorithm, which illustration can be noticed in Fig.

2. Firstly, we must ensure that the output stack is not empty. If it is not empty, then we can

begin the following algorithm:

1. Create a node and set this node as the root.

2. Call this this recursive operation that will operate as follows:

2.1. Select a token from the output stack.

2.2. If the token does not have arguments, then end.

2.3. If the token has 𝑛 arguments, then repeat these steps 𝑛 times:

2.3.1. Create a new node.

2.3.2. Set the node as a son of the token.

2.3.3. Run recursive operation over the node.

After the algorithm run, we get a multi-way tree, which will run demanding tasks much simpler

and more practical.

Fig. 2 Building a multi-way tree

Central European Researchers Journal, Vol.2 Issue 2

14 CERES ©2016

IV. IMPLEMENTATION OF SHUNTING-YARD ALGORITHM

In order to implement the shunting-yard algorithm, building a multi-way tree and ensure

calculation for complex framework for reliability analysis based on logical differential calculus,

we have to think of the class architecture for the developed tool. Basic module, responsible for

parsing and evaluating expressions (can be seen in Fig. 3) has been designed so that it can

process the input expression and convert it into the shape of the multi-way tree. The class

diagram consists of 10 classes, whose individual meaning will now be explained.

The first one is abstract class Token, which is a superclass for any supported type of

expression, such as constants, operators, functions, etc. Variable class, a subclass of class

Token, represents a variable and this variable has to meet certain established rules such as

variable must begin with capital or small letter, $ or break character; the rest characters must

be capital or small letters, digits or break characters and variables could not be named as defined

functions or operations (e.g., X1, variable_one, ThisIsAlsoVariable). Number is a class

(a subclass of class Token), which represents the numeric value or defined constants. The

occurrence of parentheses and their impact on the priority has also to be taken into account

during parsing, so Parenthesis class, a subclass of class Token, is needed for their

representation.

The previous classes allow us to use variables, constants and parentheses in the program.

Another important part is support for operations and functions. For this purpose, the next classes

are defined in the parser.

Operation class, a subclass of class Token, represents all operations in the specified system.

This class stores representation in the input, operation’s priority, associativity and arity.

Another important class is Function class, which is also a subclass of class Token. This class

presents a general representation of the functions defined in the system. Functions can have

multiple parameters. These parameters are separated by function parameters separator. In order

to take function parameters separator into account when parsing, it was necessary to define a

class FuncionSeparator, which is also inherit from abstract class Token.

Sometimes, it is also necessary to represent the expression, e.g. 5 ∗ 𝑥 + 6. For this purpose,

the Expression class can be used.

One of the main classes in the module is the class Parser, which executes shunting-yard

algorithm based on the specified input text and stores the output stack for further usage. It also

allows us to set the characters used in the input text, such as decimal point, types of parentheses

and function parameters separator.

The other one of the main classes is class Evaluator. An instance of this class is responsible

for creating a multi-way tree based on the stack received from an instance of class Parser. After

creating the tree, instances of this class allow us to perform all symbolic calculations on the

symbolic expression, such as simplification or, in case of logic functions, transformation into

normal forms.

Fig. 3 Class diagram

Central European Researchers Journal, Vol.2 Issue 2

CERES ©2016 15

V. CONCLUSION

One of the current issues of reliability analysis is investigation of complex systems. Several

approaches can be used in solving this problem. One of them is based on application of MVL.

MVL functions and tools related to them (e.g., logical differential calculus) can be used to

express the structure function of a system under consideration, investigate importance of the

system components, or find minimal scenarios needed for ensuring system mission. Application

of these ideas in the analysis of systems composed of many components requires creating

complex software that will implement all of them. However, such software has not yet been

developed. Because of that, we decided to create one.

The essential part of the previously mentioned software is a module that will be able to parse

and transform complex mathematical expressions, which are easily readable by a human, into

the form that can be processed on the computer. For this purpose, we decided to implement the

shunting-yard algorithm and use a multi-way tree to represent the parsed expression. In this

paper, we present the architecture of the module that implements this algorithm. The

architecture reflects all elements that can exist in the mathematical expressions (variables,

constants, functions, operators and their properties), and it is fully customizable for specific,

e.g. logic, expressions, i.e., it allows defining the format of variables, possible constants, and

operators with their properties, such as precedence, associativity, and arity.

REFERENCES

[1] E. Zio, “Reliability engineering: Old problems and new challenges,” Reliability Engineering & System Safety,

vol. 94, no. 2, pp. 125–141, Feb. 2009.

[2] E. Zaitseva, V. Levashenko, and M. Rusin, “Reliability analysis of healthcare system,” in 2011 Federated

Conference on Computer Science and Information Systems, FedCSIS 2011, 2011, pp. 169–175.

[3] P. Praks, V. Kopustinskas, and M. Masera, “Probabilistic modelling of security of supply in gas networks and

evaluation of new infrastructure,” Reliability Engineering & System Safety, vol. 144, pp. 254–264, Dec. 2015.

[4] B. Natvig, Multistate Systems Reliability Theory with Applications. Chichester, UK: John Wiley & Sons, Ltd,

2011.

[5] E. Zaitseva and V. Levashenko, “Multiple-valued logic mathematical approaches for multi-state system

reliability analysis,” Journal of Applied Logic, vol. 11, no. 3, pp. 350–362, Sep. 2013.

[6] S. N. Yanushkevich, D. M. Miller, V. P. Shmerko, and R. S. Stankovic, Decision Diagram Techniques for

Micro- and Nanoelectronic Design Handbook, vol. 2. Boca Raton, FL: CRC Press, 2005.

[7] M. Kvassay, E. Zaitseva, J. Kostolny, and V. Levashenko, “Importance analysis of multi-state systems based

on integrated direct partial logic derivatives,” in 2015 International Conference on Information and Digital

Technologies (IDT), 2015, pp. 183–195.

[8] M. Kvassay, E. Zaitseva, V. Levashenko, and J. Kostolny, “Minimal cut vectors and logical differential

calculus,” in 2014 IEEE 44th International Symposium on Multiple-Valued Logic, 2014, pp. 167–172.

[9] M. Kvassay, E. Zaitseva, and V. Levashenko, “Minimal cut sets and direct partial logic derivatives in

reliability analysis,” in Safety and Reliability: Methodology and Applications - Proceedings of the European

Safety and Reliability Conference, ESREL 2014, 2015, pp. 241–248.

[10] Edsger W. Dijkstra, “Algol 60 translation : An Algol 60 translator for the x1 and Making a translator for

Algol 60” in Research Report 35, Mathematisch Centrum, Amsterdam, 1961. Reprint archived at

http://www.cs.utexas.edu/users/EWD/MCReps/MR35.PDF.

[11] T. S. Norvell “Parsing Expressions by Recursive Descent,” Spring 1999 http://www.engr.mun.ca/~theo/

Misc/exp_parsing.htm.

[12] A. V. Aho, M. S. Lam, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques, & Tools, Second

Edition, Pearson Education, Inc., 2007.

[13] B. R. Preiss, Data Structures and Algorithms with Object-Oriented Design Patterns in C++, John Wiley &

Sons, 1999.

[14] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms (3rd ed.), MIT Press and

McGraw-Hill, 2009.

Central European Researchers Journal, Vol.2 Issue 2

16 CERES ©2016

	Parser of Input Data in Reliability Analysis based on Logical Differential Calculus

