Sensitivity Analysis of MVL Systems by the Logic Derivatives of MVL Functions

Peter Sedlacek, Maryam Ospanova, Marina Yelis

Abstract

Two approaches of sensitive detection of complex networks realized on multivalued logic (MVL) objects are considered. These approaches are based on algorithms of Logical Differential Calculus and on the ideas of Universal and Directed Partial Logical Derivatives. The distinguishing feature of the proposed algorithms is their computable by regular matrix mathematical apparatus. It allows us to realize the efficient software and hardware support such as homogeneous, parallel and neural structures, and also some standard applied packages of matrix algebra.

Keywords- MVL Function, Logic Differential Calculus, Sensitivity of MVL-systems.

I. INTRODUCTION

At present, there are some formal approaches to solve tasks of the sensitivity analysis of logical systems. One of them was based on algorithms of Logical Differential Calculus. The first algorithms are based on the concept of the Logical Derivative of the Boolean function [1] - [3]. Its definition follows from the concept "change" (negation) of binary variable of Boolean function. The development of this approach based on papers [4] and [5]. These algorithms are used for sensitivity analysis of binary systems. However, to solve applied tasks for describing modern logical systems, Multiple Valued Logic (MVL) functions are used instead of Boolean function. Owing to this fact the concept of Boolean Derivative on the area of MVL functions has been generalized [6] - [9]. In this case, the concept of "change" may be defined as inversion or cyclic inversion of logical variables and others. In papers [10] - [12] some types of Logic Derivatives are proposed for sensitivity analysis. These Derivatives depend on the character of the logical connection between the meanings of the variables MVL functions (Derivatives with multi-divisible cyclic inversion of variables, cyclic inversion of variables, negation of variables). The first type of Derivatives detects the modification of the function if the i-th variables $x i$ sequentially equals to all the values from 0 to $k-1$ (k-valued of function). Two other Derivatives allow to detect the character of modification of function if the value corresponding to its cyclic inversion and negation.
The existing algorithms of Logic Different Calculus are based on symbolic transforms of algebra of logic and characterized by large computing complexity and it is difficult to use them in practice. One of the ways to remove this drawback is the realization of these algorithms by matrix apparatus [4], [12] and [13]. Using the matrix mathematical apparatus allows to fulfilling hardware realization on homogeneous, parallel and neural structures or software on standard applied packages of matrix algebra.

In papers [14] - [19] the methods of the detection of changes for multilevel logical systems are designed. However, models of different changes for systems are considered here. Therefore, it needs a complicated combination of several proposed models to sensitivity analysis of these changes. It always requires to apply special software and hardware.
In this paper, two algorithms of Logic Differential Calculus to compute Logic Derivatives of MVL functions are represented. These algorithms allow us to analyse some types of changes.

II. Main Concepts

Definition 1.A k-valued logic (multiple-valued) function $f(\mathrm{X})=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of n variables is the logic function given on the sets $\{0,1, \ldots, k-1\}^{n} \rightarrow\{0,1, \ldots, k-1\}[2]$.
Number of k-valued logic function is equal $k^{k^{n}}$. Any k-valued logic function $f(\mathrm{X})$ of n variables may be represented as symbolic or truth-table vector column forms. The symbolic form is

$$
f(\mathrm{X})=\mathrm{V}_{l=0}^{k-1} l \Lambda \mathrm{P}_{l}(\mathrm{X}), \quad \text { where } \quad \begin{gather*}
\mathrm{P}_{l}(\mathrm{X})=\mathrm{V} \\
f\left(r_{1}, r_{2}, \ldots, r_{n}\right)=l \tag{1}
\end{gather*} x_{1}^{r_{1}} \Lambda x_{2}^{r_{2}} \Lambda \ldots \Lambda x_{n}^{r_{n}}
$$

what denotes the grouping the terms $x_{1}^{r_{1}} \Lambda x_{2}^{r_{2}} \Lambda \ldots \Lambda x_{n}^{r_{n}}$ on the basis of the same coefficients $l=0, \ldots, k-1$. The literal operation is defined as characteristic function:

$$
y^{s}=\varphi_{s}(y)= \begin{cases}0, & y \neq s \tag{2}\\ k-1, & y=s\end{cases}
$$

Definition 2. The truth-table column vector is defined as $\mathbf{X}=\left[x^{(0)} x^{(1)} \ldots x^{\left(k^{n-1}\right)}\right]^{\mathrm{T}}$ given on the set arranged in lexicographic order.
Definition 3. A Partial Logic Derivative of a k-valued logic function $f(\mathrm{X})$ of n variables with respect to variable x_{i} is defined as follows [12]

$$
\begin{equation*}
\partial f(\mathrm{X}) / \partial x_{i}=f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) \oplus f\left(x_{1}, \ldots, \bar{x}_{i}, \ldots, x_{n}\right) \quad(\text { over } \operatorname{GF}(k)), \tag{3}
\end{equation*}
$$

where the value of variable \bar{x}_{i}-defines type of changing variable x_{i}.
Definition 4. A Direct Partial Logic Derivative $\partial f(j \rightarrow l) / \partial x_{i}(a \rightarrow b)$ of a k-valued logic function $f(\mathrm{X})$ of n variables with respect to variable x_{i} reflects the fact of changing of function from j to l when the value of variable x_{i} is changing from a to b and it is computed according to expression [10]:

$$
\begin{equation*}
\partial f(j \rightarrow l) / \partial x_{i}(a \rightarrow b)=\left.\left.\mathrm{P}_{j}(\mathrm{X})\right|_{x_{i}=a} \cdot \mathrm{P}_{l}(\mathrm{X})\right|_{x_{i}=b} \tag{4}
\end{equation*}
$$

Transform this notation (4) in matrix form.

III. Matrix Form of the Universal Partial Logic Derivatives

A matrix form of the Partial Logic Derivative of a k-valued logic function (4) is written by

$$
\begin{equation*}
\left.\partial \mathbf{X} / \partial x_{i}=\mathbf{R}_{k^{\prime}}^{(i)} \mathbf{X} \quad \quad \text { (over } \operatorname{GF}(k)\right) \tag{5}
\end{equation*}
$$

Here $\mathbf{X}=\left[\begin{array}{lll}x^{(0)} & x^{(1)} \ldots x^{\left(k^{n}-1\right)}\end{array}\right]^{\mathrm{T}}$ is the truth-table column vector of the function $f(\mathrm{X})$; the $k^{n} \times k^{n}$ differentiation matrix $\mathbf{R}_{k^{\prime \prime}}^{(i)}$ is formed by the rule

$$
\begin{equation*}
\mathrm{R}_{k^{n}}^{(i)}=\mathrm{I}_{k i-1} \otimes \mathrm{R}_{k n-i+1} \quad \quad(\text { over } \operatorname{GF}(k)) \tag{6}
\end{equation*}
$$

where \otimes denotes Kronecker product; the elementary matrix $R_{k^{n i+1}}$ is computed by the rule

$$
\mathrm{R}_{k n-i+1}=\mathrm{I}_{k n-i+1}+\left(\mathrm{S}_{k} \otimes \mathrm{I}_{k n-i}\right) \quad(\text { over } \mathrm{GF}(k))
$$

where (a, b)-th element of monomial $k \times k$ matrix S_{k} equals to 1 , if $a=x$ and $b=\bar{x}$; $a, b=0, \ldots, k-1 ; \quad \mathrm{I}_{k c}$ - is the $k^{c} \times k^{c}$ identity matrix.

Example 1. Compute the differentiation matrix of 3-valued logic function with respect to variable x_{1}. Let's define the rule of changing variables as the cyclic inversion $(0 \rightarrow 1,1 \rightarrow 2$, and $2 \rightarrow 0$). Then matrix S_{3} is equal:

$$
S_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

The differentiation matrix $\mathrm{R}_{3^{2}}^{(1)}$ with respect to variable x_{1} is computed by rule (6):

Example 2. Let's compute the Partial Logic Derivatives of the MVL function $f(\mathrm{X})(n=2$, $k=3$) given by its truth-table column vector $\mathbf{X}=\left[\begin{array}{lll}111 & 200 & 210\end{array}\right]$ with respect to variable x_{1} using (5):

$$
\partial \mathbf{X} / \partial x_{1}=\mathrm{R}_{3^{2}}^{(1)} \mathbf{X}=\left[\begin{array}{lll}
011 & 110 & 021
\end{array}\right]^{\mathrm{T}} \quad(\text { over } \mathrm{GF}(k))
$$

where matrix $R_{3^{2}}^{(1)}$ was formed in example 1 .
The third and the forth elements of the truth-table vector column of the Partial Logical Derivatives $\partial \mathbf{X} / \partial x_{1}$ equal to $1\left(x^{(3)}=x^{(6)}=2\right)$. However, in the first case the meaning of the function doesn't depend of the change of variable x_{1}. In second case the value of the MVL function changes from 0 to 1 when the changing value of $c\left(x^{(4)}=0, x^{(7)}=1\right)$. Therefore, these Derivatives cannot be used to synthesis test patterns to test MVL-switching circuits.

Let us consider Universal Logic Derivatives. These Derivatives allow to define the influence of changing the values of input variables on the meaning of the MVL function.

Definition 5. A Universal Partial Logic Derivative of a MVL function with respect to variable x_{i} is the MVL function defined by

$$
\begin{equation*}
\tilde{\partial} f(\mathrm{X}) / \tilde{\partial} x_{i}=\overline{\varphi_{s}(y)} \tag{7}
\end{equation*}
$$

where $y=f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)$ and $z=f\left(x_{1}, \ldots, \tilde{x}_{i}, \ldots, x_{n}\right)$.
The matrix form of the Universal Partial Logic Derivatives of MVL function (7) is defined by the expression

$$
\begin{equation*}
\tilde{\partial} \mathbf{X} / \tilde{\partial} x_{i}=\mathrm{R}_{k^{n}}^{(i)} \circ \mathbf{X} \tag{8}
\end{equation*}
$$

where $\mathbf{R}_{k^{n}}^{(i)}$ - differential matrix formed by the rule (6); symbol \circ denotes comparison operation.
Example 3. Let's compute Universal Partial Logical Derivatives with respect to variable x_{1} of MVL function $f(\mathrm{X})(n=2, k=3)$ given by its truth-table column vector $\mathbf{X}=\left[\begin{array}{lll}111 & 200 & 210\end{array}\right]$ using (8):

$$
\tilde{\partial} \mathbf{X} / \tilde{\partial} x_{1}=\mathrm{R}_{3^{2}}^{(1)} \circ \mathbf{X}=\left[\begin{array}{lll}
222 & 020 & 202 \tag{9}
\end{array}\right]^{\mathrm{T}},
$$

where matrix $\mathrm{R}_{3^{2}}^{(1)}$ formed as in Example 1.
The flow graphs of algorithm of computing the Universal Partial Logic Derivatives of MVLfunction ($n=2, k=3$) are shown in Fig. 1

Fig. 1. Flow graphs of the algorithms (9) which respect to variable x_{1}.

IV. Algorithm of Computing Direct Partial Logical Derivatives

Let the matrix form of the Direct Partial Logic Derivative of MVL functions (3). The truthtable column vector of Direct Partial Logic Derivative of a k-valued logic function $f(\mathrm{X})$ of n variables with respect to variable x_{i} is computed by the expression [19]:

$$
\begin{equation*}
\partial \mathbf{X}(j \rightarrow l) / \partial x_{i}(a \rightarrow b)=\left(\mathrm{P}_{k^{\prime \prime}}^{(i, a)} \cdot \varphi_{j}(\mathbf{X})\right) \cdot\left(\mathrm{P}_{k^{n}}^{(i, b)} \cdot \varphi_{l}(\mathbf{X})\right), \tag{10}
\end{equation*}
$$

where $\mathbf{X}=\left[\begin{array}{lll}x^{(0)} & x^{(1)} \ldots x^{\left(k^{n}-1\right)}\end{array}\right]^{\mathrm{T}}$ is the truth-table column vector of the function $f(\mathrm{X})$, the column vector literal represented as

$$
\begin{equation*}
\varphi_{s}(\mathbf{X})=\varphi_{s}\left(\left[x^{(0)} x^{(1)} \ldots x^{\left(k^{n-1}\right)}\right]\right)=\left[\varphi_{s}\left(x^{(0)}\right) \varphi_{s}\left(x^{(1)}\right) \ldots \varphi_{s}\left(x^{\left(k^{n}-1\right)}\right)\right], \tag{11}
\end{equation*}
$$

$\varphi_{s}(y)(s=j, l)$ compute with according of (2).
The matrix $\mathrm{P}_{k^{n}}^{(i, m)}(m=a, b)$ is formed by the rule

$$
\begin{equation*}
\mathbf{P}_{k^{\prime \prime}}^{(i, m)}=\mathbf{M}_{k i-1} \otimes \mathrm{P}_{k}^{(m)} \otimes \mathbf{M}_{k n-i}, \tag{12}
\end{equation*}
$$

where $\mathrm{M}_{k i-1}$ and $\mathrm{M}_{k n-i}$ are the $k^{i-1} \times k^{i-1}$ and $k^{n-I} \times k^{n-i}$ diagonal matrices containing the value $(k-1)$ in main diagonal; the matrix $\mathrm{P}_{k}^{(m)}$ s structure is the following

$$
\mathrm{P}_{k}^{(m)}=\left[\varphi_{m}(0) \varphi_{m}(1) \ldots \varphi_{m}(k-1)\right] \otimes\left[\begin{array}{c}
k-1 \tag{13}\\
k-1 \\
\ldots \\
k-1
\end{array}\right] .
$$

Example 4. Form the matrices $\mathrm{P}_{3^{2}}^{(1,1)}$ and $\mathrm{P}_{3^{2}}^{(1,2)}$ using $(12,13)$:

Example 5. Compute the Direct Partial Logic Derivative $\partial f(0 \rightarrow 1) / \partial x_{i}(1 \rightarrow 2)$ of the 3-valued logic function $f(\mathbf{X})$ of 2 variables given by its truth-table column vector $\mathbf{X}=\left[\begin{array}{lll}111 & 200 & 210\end{array}\right]^{\mathrm{T}}$.

Use expression (10) and write

$$
\partial \mathbf{X}(0 \rightarrow 1) / \partial x_{1}(1 \rightarrow 2)=\left(\mathrm{P}_{3^{2}}^{(1,1)} \cdot \varphi_{0}(\mathbf{X})\right) \cdot\left(\mathrm{P}_{3^{2}}^{(1,2)} \cdot \varphi_{0}(\mathbf{X})\right),
$$

where $\varphi_{0}(\mathbf{X})=[000022002]^{\mathrm{T}}, \varphi_{1}(\mathbf{X})=\left[\begin{array}{lll}222 & 000 & 020\end{array}\right]^{\mathrm{T}}$; matrices $\mathrm{P}_{3^{2}}^{(1,1)}$ and $\mathrm{P}_{3^{2}}^{(1,2)}$ are formed as in Example 4. The computed column vector $\partial \mathbf{X}(0 \rightarrow 1) / \partial x_{1}(1 \rightarrow 2)=\left[\begin{array}{lll}020 & 020 & 020\end{array}\right]^{\mathrm{T}}$ corresponds to the following symbolic notation: $\partial f(0 \rightarrow 1) / \partial x_{i}(1 \rightarrow 2)=x_{2}^{1}$.

The flow graphs of algorithm of computing the Direct Partial Logic Derivatives of MVLfunction $(n=2, k=3), a=0,=1 ; i=1,2$ are shown in Fig.2. It should be noted that the structure of synthesized flow graphs coincides with the fast Fourier transform signal flow graphs structure used in digital signal processing.

Fig.2. Flow graphs of the algorithms (10), symbol "•" is comparison operation

V. Synthesis of Sets for Sensitivity Analysis

The authors offer simple parallel algorithms for sensitivity analysis of MVL systems. These algorithms are based on the operators of computing of the Universal and Direct Partial Logic Derivatives have been considered in sections III and IV.

Definition 6 . Any sets $t_{1}, \ldots, t_{i}, \ldots, t_{n}$ and $t_{1}, \ldots, \tilde{t}_{i}, \ldots, t_{n}$ of input variables $x_{1}, \ldots, x_{i}, \ldots, x_{n}$ detecting the changes for which changing the value of i-th input variable from x_{i} into \tilde{x}_{i} leads to changing the value of the realised function from $f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)$ into $f\left(x_{1}, \ldots, \tilde{x}_{i}, \ldots, x_{n}\right)$ are called sets for sensitivities analysis.
Let's consider technique of using the Universal and Direct Partial Logic Derivatives to synthesize the sets.
Example 6. We have a logical system realizing the MVL-function $f(\mathrm{X})(n=2, k=3)$, defined by its truth-table column vector $\mathbf{X}=\left[\begin{array}{lll}111 & 200 & 210\end{array}\right]^{\mathrm{T}}$.

Find the sets $x_{1} x_{2}$ to detect cyclic inversion changes on the logic input x_{1}.
A) Let's use the Universal Partial Logic Derivatives. Using the results of computing Partial Logical Derivatives received in Example 3 we build Table I.

Table I.
SETS TO DETECT CYCLIC INVERSION IN INPUT x_{1} OF THE NETWORK IN EXAMPLE 6.

Test pattern		Output values		
$x_{1} x_{2}$	$x_{1}{ }^{*} x_{2}$	$f(\mathrm{X})$	$f^{*}(\mathrm{X})$	
0	0	1	0	1
0	1	1	1	1
0	2	1	2	1
1	1	2	1	0
2	0	0	0	2
2	0	0	0	0
2				

The sets to be found are sets of variables corresponding to value " 2 " of the vector $\tilde{\partial} \mathbf{X} / \tilde{\partial} x_{1}$.
B) Let's use the Direct Partial Logic Derivatives. To receive the sets it is necessary to compute the Direct Partial Logical Derivatives $\partial \mathbf{X}(j \rightarrow k) / \partial x_{i}(a \rightarrow a+1)$ for all $j, k, a=0,1,2$ when $a \neq b$. Write the results (non-zero truth vectors of Derivatives) in Table II.

Table II
THE NONZERO TRUTH-TABLE COLUMN VECTORS OF THE PARTIAL LOGIC DERIVATIVES

$\frac{\partial \mathrm{X}(1 \rightarrow 2)}{\partial x_{1}(0 \rightarrow 1)}$	$\frac{\partial \mathrm{X}(1 \rightarrow 0)}{\partial x_{1}(0 \rightarrow 1)}$	$\frac{\partial \mathrm{X}(1 \rightarrow 2)}{\partial x_{1}(0 \rightarrow 2)}$	$\frac{\partial \mathrm{X}(0 \rightarrow 1)}{\partial x_{1}(1 \rightarrow 2)}$	$\frac{\partial \mathrm{X}(1 \rightarrow 0)}{\partial x_{1}(0 \rightarrow 2)}$
2	0	2	0	0
0	2	0	2	0
0	2	0	0	2
2	0	2	0	0
0	2	0	2	0
0	2	0	0	2
2	0	2	0	0
0	2	0	2	0
0	2	0	0	2

Nonzero elements of the truth-table column vectors of the Derivatives define the variables sets being the sets to detect the cyclic inversion faults in the given circuit (Table III). Thus the sets (Table I) allow to detect cyclic inversion changes in input x_{1}.

TABLE III
Change of values of variables and function

Change of variable x_{1} value	$\partial \mathbf{X}(0 \rightarrow 1))$	Change of function' value	
		$\partial \mathbf{X}(1 \rightarrow 0)$	$\partial \mathbf{X}(1 \rightarrow 2)$
$\partial x_{1}(0 \rightarrow 1)$	$x_{2}=1$	$x_{2}=0$	
$\partial x_{1}(0 \rightarrow 2)$	$x_{2}=2$	$x_{2}=0$	
$\partial x_{1}(1 \rightarrow 2)$	$x_{2}=1$		

Both the suggested technologies have the same computational complexity. Its distinguish features detect on the stage of hardware and software realisation. One of the main characteristics of the received technologies is the possibility of their realisation following with different hardware architecture principles (parallel, pipelining, systolic etc.) [12] and software [20]. The initial object should be described by truth-table vector columns. As an example, these descriptions can be obtained based on the induction of Fuzzy Decision Trees (FDT). The process of calculation of truth-table vector columns based on FDT is presented in papers [21] and [22].

Conclusion

The main approaches suggested here on sensitivity analysis of MVL systems are based on different mathematical concepts of Logic Derivatives for MVL-functions. It allows to fulfil a flexible adaptation of theoretical results to solve applied diagnostics tasks that have a principal meaning for software and hardware realisation of these algorithms.

Acknowledgment

This publication was realized with the support of the Slovak Research and Development Agency (Agentúra na Podporu Výskumu a Vývoja) under the contract no. APVV-18-0027 titled "New methods development for reliability analysis of complex system". The authors would like to thank prof. Elena Zaitseva and prof. Vitaly Levashenko from Dept. of Informatics, University of Žilina for the consultations and help with the paper preparation.

References

[1] A. Thayse, Boolean calculus of differences. Berlin: Springer-Verlag, 1981.
[2] D. Bochmann, and C. Posthoff, Binare dinamishe system. Berlin: Akademic-Verlag, 1981.
[3] D. Domis, K. Höfig, and M. Trapp, "A consistency check algorithm for component-based refinements of fault trees," in Proc. of the Int. Symp. on Software Reliability Engineering, 2010, pp. 171-180.
[4] D. Cheng, Y. Zhao Y., and X. Xu, "Matrix approach to boolean calculus," in Proc. 50th IEEE Conf. on Decision and Control, Orlando, FL, USA, 2011, pp. 6950-6955.
[5] H. Chen, and J. Sun, "A new calculation for Boolean derivative using Cheng product, Journal of Applied Mathematics, no.748343, 2012.
[6] J.C. Muzio, and T.C. Wesselkamper, Multiple-Valued Switching Theory. Bristol and Boston: Adam Hilder, 1986.
[7] D.C. Rine, Ed., Computer Science and Multiple-Valued Logic. Theory and Applications. 2nd ed. Amsterdam: North-Holland, 1984.
[8] L. Zhenbin, and W. Yuzhen, "Directional derivatives of multi-valued logical functions," in Proc. of the Chinese Control Conf., 6639405, 2013, pp. 84-89.
[9] Y.-K. Gu, and J. Li, "Importance analysis of a multi-state system based on direct partial logic derivatives and multi-valued decision diagrams," Journal of Donghua University, vol. 31, no.6, pp. 789-792, 2014.
[10] T.A. Giuma, and M.A. Tapia, "Differential calculus for fault detection in multivalued logic networks," in Proc. of the Int. Symp., on Multiple-Valued Logic, 1987, pp.99-108.
[11] I.G. Tabakov, "Fast test generation for m-logic combinational circuits," Int. Journal of Electronics, vol.66, no.1, pp.57-62, 1989.
[12] G. Kukharev, V. Shmerko, and E. Zaitseva, Algorithms and Systolic Processors for Multivalued Data. Minsk: Vysheishaya Shkola, 1990, (In Russian).
[13]E. Mizraji, "Differential and integral calculus for logical operations. A matrix-vector approach," Journal of Logic and Computation, vol. 25, no. 3, pp. 613-638, 2015.
[14]H.M. Wang, C.L. Lee, and J.E. Chen, "Complete Test Set for Multiple-Valued Logic Networks," in Proc. of the Int. Symp., on Multiple-Valued Logic, 1994, pp.289-296.
[15]E.V. Dubrova, D.B. Gurov, and J.C. Muzio, "Full Sensitivity and Test Generation for Multiple-Valued Logic Circuits," in Proc. of the Int. Symp., on Multiple-Valued Logic, 1994, pp.284-288.
[16] N. Kamiura, T. Isokawa, and N.Matsui, "PODEM based on static testability measures and dynamic testability measures for multiple-valued logic circuits," in Proc. of the Int. Symp. on Multiple-Valued Logic, 2002, pp.149-155.
[17] Z. Liu, Y. Wang, and H. Li, "New approach to derivative calculation of multi-valued logical functions with application to fault detection of digital circuits," IET Control Theory and Applications, vol.8, no.8, pp. 554560, 2014.
[18] T. Ayav, "Fourier analysis-based automatic test pattern generation for combinational circuits," in Proc. of the 23rd Signal Processing and Communications Applications Conf., 2015, pp. 128-131.
[19] V. Shmerko, S. Yanushkevich, V. Levashenko, and I. Bondar, "Technique of Computing Logic Derivatives for MVL-Functions," in Proc. of the Int. Symp., on Multiple-Valued Logic, 1996, pp.267-272.
[20] D. Smalik, P. Rusnak, P. Sedlacek, and N. Brinzei, "Software Tool for Importance Measures Computation Used in Reliability Analysis," Proc. of the 18th Int. Conf. on Emerging eLearning Technologies and Applications, 2020.
[21]E. Zaitseva, V. Levashenko, J. Rabcan, and E. Krsak, "Application of the Structure Function in the Evaluation of the Human Factor in Healthcare," Symmetry, vol. 12, no. 1, 93, 2020.
[22] E. Zaitseva, V. Levashenko, and J. Rabcan, "Application of Structure Function Based Reliability Analysis in Medical Domain," in Proc. of the 30th Europ. Safety and Reliability Conf. and the 15th Probabilistic Safety Assessment and Management Conf. (ESREL2020-PSAM15), Venice, 2020.

