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Abstract— Previously, a model for the spatial resolution enhancement of satellite dual-polarization synthetic 

aperture radar data with physical constraints was proposed, which was to convert different polarizations 

backscattering into a single type of physical quantities. However, since the integral equation model depends on the 

roughness of the reflecting surface, a refined model for resolution enhancement with physical constraints is 

proposed. In which, first, it is necessary to divide the entire scene into roughness classes by unsupervised land cover 

classification. Then, an iterative calculation of the land surface dielectric permittivity is performed within each of 

the land cover classes for two polarizations separately to provide the obtained values as close as possible. The 

granularity/correlation radius is used as an optimization control parameter. Next, a table of the land cover classes 

characteristics is formed, which is used to calculate the distributions of the dielectric permittivity for two 

polarizations radar backscattering. Last, the superresolution of the obtained pair of subpixel-shifted images is carried 

out using any of the known methods. 
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I. INTRODUCTION 

The optical satellite data have a great impact on object detection and mapping, but radar data 

extend remote sensing techniques to all-weather use [1]. The spatial resolution of radar images 

and their derived data products is very important in radar remote sensing applications. However, 

the lack of spatial resolution remains a serious problem of radar remote sensing [2]. 

There are many superresolution methods, which are subdivided by the principle of operation 

into hardware-based, band-translation and multi-frame fusion. Some super-resolution approaches 

require several subpixel-shifted images to build an enhanced image [3]. 

We have previously proposed a physically constrained model for dual-polarization radar data 

superresolution using the land surface dielectric permittivity data distribution as input [4]. The 

problem is the model adjusting with the land surface roughness statistical characteristics – both 

granularity and correlation radius – that can vary for different land cover types. Now we propose 

the following technique that is based on the need to divide the entire scene into land surface 

roughness classes using an unsupervised classification of radar data. 

 

II. MATERIALS 

The dual-polarization synthetic aperture radar (SAR) image of the Sentinel-1 satellite single-

look complex (SLC) data product for 09/17/2019 on the territory of the Kharkov city and the 

close vicinity area was used in this study. Images were uploaded from the Copernicus Sentinel 

Data Hub System – Ukraine (http://sentinel.spacecenter.gov.ua). Preliminary processing of 

images is carried out, which consists of radiometric and geometric correction. Further, a land 

surface classification is required to subdivide the whole image into classes that reflect 

differences in the roughness of land surface (Fig. 1). To improve the classification accuracy, 
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additional radar-derived data are used [5, 6], such as polarization ratios, polarization coherence 

distributions, GLCM statistics, etc. Five classes of the land surface were obtained. 

 

   
a                                                   b                                                  c 

Fig. 1 Sentinel-1 satellite SAR data: a – σ0 backscattering value by horizontal (a) and vertical (b) 

polarizations and land surface roughness classification (c) 

 

Classification map of study area Fig. 1c includes land surface roughness classes, which 

correspond the different types of land cover, such as the tree and grass vegetation, open soil, 

single-story and high-rise urban development and so on. This classification will be required 

further for the radar backscattering conversion into the physical characteristic of the land surface. 

III. METHOD 

The main idea of the applied method is to bring the radar images backscattering values of 

different polarizations into a unified physical quantity, namely the dielectric permittivity. A well-

known Integral Equation Model (IEM) can be used for this purpose [7]. 

To convert backscattering values sigma nought σ0 into dielectric permittivity ε we need to 

know two parameters – the standard deviation s of rough land surface irregularities and the 

correlation radius l. In the case of two polarizations, the IEM can be written as [8] 

 

𝛼 =
√𝜎0

2𝑘2𝑠cos2𝜃√𝑙𝑒𝑥𝑝[−𝑘𝑙 sin𝜃]2
                                                (1) 

 

𝛼𝐻 =
𝜀−1

(cos𝜃+√𝜀−sin2𝜃)
                                                (2) 

 

𝛼𝑉 = (𝜀 − 1)
(𝜀−1)sin2𝜃+𝜀

(εcos𝜃+√𝜀−sin2𝜃)2
                                                (3) 

 

where k = 2π/λ is the radar wavenumber, λ is the radar wavelength, θ is the radar beam incidence 

angle, αH, αV – are the alpha parameters for the horizontal and the vertical polarizations 

respectively. 

The l parameter value lays in the range 4-10 times of s and can be evaluated for each class 

independently via numerical computation. In the current case, the l is 4-6 times greater than s. 

The standard deviation of rough land surface irregularities cannot be much more than one-half of 

a wavelength due to physical constraints and usually lies in 0.004 ≤ s ≤ 0.0125 m [9]. 

The s value for each class is established for the point where different polarizations ε values 

cross. Fig. 2 demonstrates the examples of ε determining. 
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Fig. 2 Land surface dielectric permittivity distributions by horizontal (red) and vertical (blue) 

polarizations: a – land surface roughness class 3, b – land surface roughness class 1 

 

As shown in Fig. 2, land surface dielectric permittivity does intersect at some points. The 

points are selected as much far from the epsilon max peaks as possible, due to peaks being an 

interpolation of ε function model gaps. 

According to Fig. 2 plots ε distributions intersect at points s = 0.008, l = 4 for the class 3 and 

s = 0.01, l = 4 for the class 1. Using this approach we have gathered results for each class that are 

shown in Table 1. 

 

 
Having evaluated all parameters we can now obtain corresponding ε image for both 

polarizations solving system of equations (1) – (3). 

To build the superresolution image we need to estimate the sub-pixel shift between them. It 

can be done by phase correlation in the frequency domain with special software [10]. After the 

sub-pixel estimation, we can build an enhanced image using any superresolution technique, e.g. 

Gaussian regularization [4]. 

The dataflow diagram in Fig. 3 describes the dual-polarization SAR image processing for land 

surface dielectric permittivity superresolution. 

The difference between the proposed dataflow and the previous one is the more accurate 

determining the land surface dielectric permittivity taking into account the classification of its 

roughness. 

IV. RESULT 

The foregoing method and dataflow applying to radar backscattering data resulted in spatial 

distributions of unified dielectric permittivity based on the land surface roughness parameters of 

classes. Obtained distributions are shown in Fig. 4. 

 

 

TABLE I 

EPSILON CURVES INTERSECTION PARAMETERS 

Class number s value l value 

1 0.0085 4s = 0.034 

2 0.0075 5s = 0.0375 

3 0.0080 4s = 0.032 

4 0.0058 4s = 0.0232 

5 0.0050 6s = 0.030 
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Fig. 3 The dataflow diagram for SAR data product superresolution 

 

The separate cut-through processing of different polarizations radar backscattering combined, 

firstly, by their synthetic classification of the land surface roughness, and, secondly, by joint 

processing to obtain an enhanced resolution image of unified dielectric permittivity. 

 

  
Fig. 4 Unified dielectric permittivity maps of study area: a – HV polarization derived,  

b – VV polarization derived, c – enhanced resolution 

 

A method based on modulation transfer function (MTF) extracted from the digital image was 
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engaged to quantify the achieved resolution enhancement. This method finds the bidirectional 

edge spread functions (ESF) within the 4×4 sliding window, corresponding to contrast jumps 

both horizontally and vertically [11]. Directly measured by images normalized values of the ESF 

were approximated by integral gaussoid. Averaged ESFs for all three radar data images (Fig. 3) 

are shown in Fig. 5 plot. 

 

 
Fig. 5 Measured and approximated ESF of dielectric permittivity images: a – HV polarization derived, b 

– VV polarization derived, c – enhanced resolution 

 

Gaussian approximation of ESF is determined mainly by two parameters, namely, the 

steepness of transient response and one’s contrast. In turn, spatial resolution is determined only 

by the first parameter. Gaussian approximation of ESF spatial derivative h(x) can be written as 

 

ℎ(𝑥) =
𝜕

𝜕𝑥
𝐸𝑆𝐹 =

1

𝜎√2𝜋
𝑒
−

𝑥2

2𝜎2                                                (4) 

 

where σ is a gaussiod parameter. Hence the MTF T(ν), ν is a spatial frequency, approximation 

follows [12]: 

 

𝑇(𝜈) = 𝑒−2𝜋
2𝜎2𝜈2                                                        (5) 

 

from here the relationship between the spatial resolution r and the σ parameter will be 
 

𝑟 = 𝜋𝜎√
2

−ln𝑇∗
                                                            (6) 

 

where T* = const is the modulation threshold, usually one is given to 0.25 .. 0.5 [13]. 

Calculated by transient responses Fig. 3 resolution specifications are in Table 2: 

 

 
Taking into account the half-reducing the formal pixel size in the enhanced resolution image, 

the actual spatial resolution enhancement is 29.5% for HV polarization derived image, 39.1% for 

TABLE II 

ESTIMATED ACTUAL RESOLUTIONS OF RADAR DATA IMAGES FIG. 1 

Radar data image HV polarization derived VV polarization derived Enhanced resolution a 

σ parameter, pixels 0.411 0.476 0.580 

resolution r, pixels 1.551 1.797 2.187 
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VV polarization derived image and 34.5% on average. Such value of resolution enhancement for 

two input images only is a reasonably good result. 

V. CONCLUSION 

The described approach to the superresolution of the radar data product seems to be quite 

efficient. Dual-polarization SAR image test demonstrates enhancement in spatial resolution by 

34.5% that makes it a promising method. However, the result is very dependent on classification 

accuracy. So, the method can be improved by the more accurate acquisition of land surface 

parameters that affect the restoration of dielectric permittivity. Such improvement can be 

achieved using multi-polarization radar imagery of higher resolution, as well as by more accurate 

backscattering models involvement into the computation. 

Future work should be aimed to refine the computational algorithms, including algorithms for 

superresolution, as well as to automate end-to-end processing of radar images within a unified 

application framework. Another feature of the presented approach, specifically – its physical-

driven focus, requires considerable efforts on the ground-based validation the obtained values of 

the land surface dielectric permittivity. 
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