
Ondrej Karpiš, Tomáš Bača, Ján Šumský, Michal Kubaščík

Abstract—In this paper, a processor emulator is presented which is used in the teaching of the Digital

Computers course. The emulator allows you to create a custom circuit that is controlled by an 8-bit processor via

the bus. The processor is emulated by software on the computer and is connected to the circuitry through a special

converter. Simulation software has also been created to facilitate the students in creating the circuitry, which allows

them to create the circuitry and program without the need for any hardware.

Keywords—processor emulator, simulation tools, teaching support

I. INTRODUCTION

Raising a good programmer is not and never has been an easy task. The rapid development

of software technologies in recent years has certainly made programmers' jobs easier. On the

other hand, it brings increased demands for orientation in the number of different technologies

and supporting tools. These advances have largely been made possible by the development of

integrated circuit manufacturing technologies. The speed of a computer's computational core

and the size of its operating memory represent a constraint for an increasingly smaller set of

problems. In most practical applications, programmers are not constrained by hardware at all.

Thus, the world of hardware and software is gradually becoming more distant. Nevertheless,

knowledge of the basic principles of digital computer operation belongs to the general education

of programmers [1]. That is why at the Faculty of Management science and Informatics of the

University of Žilina the subject of Digital Computers has been taught for more than 20 years.

Of course, the teaching of this subject is also evolving and adapting to the requirements of the

time. The main innovation in the teaching of this subject was the creation of a processor

emulator, which is presented in this article.

II. PROCESSOR EMULATOR

A digital computer consists of several main parts: processor, memory, input and output

devices [3]. One of the most important tasks in a computer is to provide communication

between its parts. It is to deepen the understanding of how the processor communicates with

the other parts of the computer using the bus that a simple 8-bit processor emulator was

developed. This is not a real processor, it has been designed solely for teaching purposes.

The processor emulator is software-hardware based. The operation of the processor is

emulated by the software on the PC. The connection to the hardware bus is made using a special

converter which is connected to the PC via USB. A development board is connected to the

converter, which contains four 7-segment displays, 16 buttons, one LED and a contact field on

which the students make their own circuits. Multiple development boards can be interconnected

to implement more complex circuits. The program for the processor must be written in a

dedicated assembler. The created program is executed (interpreted) sequentially by a software

emulator. The speed of program execution depends on the speed of the computer. In the case

of communication of the emulated processor with a converter, the speed is limited by the speed

Ondrej Karpiš, University of Žilina, Slovak Republic (e-mail: ondrej.karpis@fri.uniza.sk)

Tomáš Bača, University of Žilina, Slovak Republic (e-mail: tomas.baca@fri.uniza.sk)

Ján Šumský, University of Žilina, Slovak Republic (e-mail: jan.sumsky@fri.uniza.sk)

Michal Kubaščík, University of Žilina, Slovak Republic (e-mail: michal.kubascik@fri.uniza.sk)

 Support for Teaching the Subject

Digital Computers

Central European Researchers Journal, Vol.10 Issue 2

CERES ©2024 1

of the USB interface.

A. Processor structure

The proposed processor is of the RISC (Reduced Instruction Set Computers) type and uses

the Harvard architecture (i.e. it has separate memory for data and program)[4]. Figure 1 shows

its block structure. The processor contains four 8-bit general-purpose registers A, B, C, D.

According to the result of mathematical operations, the flag bits of the status register F are set:

the Z (Zero) flag is set when the result of an operation is zero and the CY (Carry) flag is set

when a register overflow occurs. In addition, the F register also contains the IE flag, which can

be used to enable or disable interrupts.

The processor also contains three 16-bit registers:

- PC (Program Counter) - pointer to the following instruction,

- SP (Stack Pointer) - pointer to the top of the stack,

- MP (Memory Pointer) - pointer for indirect addressing of external memory.

Either a constant or a pair of A-B registers can be written to the 16-bit SP and MP registers.

The C-D register pair must be used to read from these registers.

The stack size is 64 kB (65536 bytes). The program size is limited to a maximum of 65536

instructions. The processor also contains an internal RAM memory with a size of 256 B. This

memory is indirectly addressed by general-purpose registers. It is possible to define a maximum

of 256 constants within a program that can be read indirectly using the general-purpose

registers.

The width of processor data bus is 8 bits, and the width of the address bus is 16 bits. This

corresponds to an address memory space and I/O space with a range of 0-65535. The control

bus contains 9 signals, including 5 output signals (Memory Write, Memory Read, Input/Output

Write, Input/Output Read, Interrupt Acknowledge) and 4 input signals (Interrupt, Ready, Bus

Request, Bus Acknowledge).

B. Interrupts

The processor allows the use of up to 16 interrupts. When an interrupt is requested via the

Interrupt signal, if interrupts are enabled, the processor acknowledges receipt of the request

with an Interrupt Acknowledge signal. The processor then reads the interrupt handler number

(0-15) from the data bus and calls the appropriate interrupt handler. The names of the handlers

are int00 - int15. When an interrupt is invoked, the next interrupt is automatically disabled. If

there is an instruction in the handler to enable interrupts (usually this instruction is at the end

of the handler, but it can be elsewhere), it is also possible to nest interrupts. The number of

nested interrupts is limited only by the size of the stack.

An interrupt can be triggered either by the level of the Interrupt signal (when it is at logic

level "1") or when the signal changes from "0" to "1". The specific method of triggering an

interrupt can be set in the emulation software.

C. Instruction set

The CPU emulator instruction set contains 69 instructions. These instructions can be divided

into five basic groups:

- arithmetic and logical instructions: separate instructions are defined if both arguments are

in registers (e.g. ADD, SUB, AND, CMP) and if the arguments are a register and a constant

(ADI, SBI, ANI, CMI),

- instructions for shifts and rotations (SHL, SCR, RTR ...),

- data transfer instructions (MOV, INN, OUT, PUS, STR, LDR ...),

- branching instructions: in addition to conditional jumps (JZR, JNC, JE, JL ...), conditional

Central European Researchers Journal, Vol.10 Issue 2

2 CERES ©2024

subroutine calls are also available (CNZ, CCY, CNE, CG ...),

- special instructions: enable/disable interrupts; define constant in the program;

communicate with the user via the console - character input and output.

Figure 1 Structure of emulated processor

III. SIMULATION SOFTWARE

In the deployment of the processor emulator in teaching, 20 pieces of converters and 100

pieces of development boards were produced. Due to the high number of students, students had

to work in groups. The implementation of the circuits and testing of the developed program was

only possible in a dedicated laboratory equipped with converters. The circuits created on the

contact field were very sensitive to improper handling. Accidental pulling or breaking of a

single wire usually caused a complicated and lengthy search for the fault. This, coupled with

limited access to the laboratory, caused problems in completing semester works. For these

reasons, a development board simulator was created. Using the simulator, students were able to

debug their programs and circuits before implementing them in hardware. They could also work

on their semester works in their free time - at home or on campus.

The first version of the software was written in C. This made the simulation of the circuit

quite fast. However, the program had limited possibilities in terms of visualization and ease of

use. Therefore, a new version of the software was created, this time in Java. This made it

possible to use the program not only in Windows operating system but also in Linux and iOS.

Program

Counter

Program

memory

Instruction

decoder

Stack

Pointer

Stack

General

registers

ALU

Flag

register

Address

and data

bus

Control bus

Internal data

memory

Central European Researchers Journal, Vol.10 Issue 2

CERES ©2024 3

The new software also brought a more graphically appealing interface, more data display

formats, graphical differentiation of individual parts of the program (instructions of different

types, constants, labels, comments), the possibility of using more parts of the development

system (contact fields, displays, keyboards, LEDs), the possibility of visualizing the current

state of the circuits (logic levels of inputs and outputs, content of the registers or memory). The

simulation software also indicates some errors that can be caused by improper connection (e.g.

short circuit).

The simulation software uses two separate windows - one showing the processor parts

(registers, stack, internal memory) together with the user program, and the second window

showing the circuit simulator. Both windows are shown in Figure 2.

Figure 2 Processor emulator (on the left) and circuit simulator

Of course, the created simulator has some shortcomings. The main drawback is the imperfect

simulation of the behavior of the logic circuits involved. In most cases the simulation is

sufficiently faithful, but in special cases the simulator behavior is different from the behavior

of the real circuitry. The second drawback is the limited number of types of integrated circuits

that can be used in the circuitry. Also note that the speed of the simulation is dependent on the

speed of the computer. The loss of physical contact with the hardware can also be considered

as a disadvantage.

Despite the above disadvantages, the use of a simulator has undeniable positives. Mainly, it

simplifies and facilitates the work of students in creating the circuitry and they can spend more

time on creating the program or create more complex circuitry. The simulator also eliminates

the need for regular repairing of malfunctioning or damaged hardware parts - converters,

integrated circuits and development boards. For these reasons, the hardware processor emulator

has gradually been replaced by the simulator.

IV. CONCLUSION

Based on our experience, we can conclude that the use of a processor emulator in the teaching

of the Digital Computers course helps students to understand the principles of operation of

digital computers. The acquired knowledge is much more durable due to the practical

experience. Although most of the students who take this course are software developers, every

year there are a few students who are intrigued by the possibility of creating their own circuitry

and they produce very original semester works. The interest of these students is the reason why

it makes sense to continue to develop similar learning support tools.

Central European Researchers Journal, Vol.10 Issue 2

4 CERES ©2024

 REFERENCES

[1] Hassan, M. K., & Rana, M. M. "An Overview of Embedded Systems and Applications

in Education," IEEE Transactions on Education, vol. 58, no. 3, pp. 123-134, 2015.

[2] S. S. Anwar, S. A. Usmani, and M. R. K. Raju, "A review on embedded systems:

Opportunities and challenges in future," IEEE Transactions on Industrial Electronics,

vol. 55, no. 3, pp. 1005-1017, 2008.

[3] W. Stallings, Computer Organization and Architecture: Designing for Performance,

10th ed., Pearson, 2016.

[4] M. Moradi, "A Survey on Modern Microprocessor Architectures," IEEE Access, vol. 9,

pp. 53323-53340, 2021.

Central European Researchers Journal, Vol.10 Issue 2

CERES ©2024 5

	Support for Teaching the Subject Digital Computers

