
 Real-Time Communication in Modern Web

Applications: Techniques and Comparisons

Peter Bobka, Ján Janech, Patrik Hrkút

Abstract — The evolution of web applications from static pages to dynamic, interactive platforms has make

necessary the development of real-time communication technologies. This paper explores the various methods

enabling real-time communication between clients and servers, focusing on Short Polling, Long Polling, Server-

Sent Events (SSE), and WebSockets. Each technology is analyzed in terms of its functionality, advantages,

limitations, and appropriate use cases. Special attention is given to the role of these technologies in delivering a

seamless user experience in applications such as online gaming, live broadcasting, and collaborative tools. The

study also compares these methods, highlighting factors like latency, efficiency, and ease of implementation to aid

developers in selecting the most suitable technology for specific application requirements. By examining current

trends and challenges in web communication, this paper provides insights into the architectural decisions crucial

for building responsive and efficient web applications.

Keywords — Real-time communication, Short Polling, Long Polling, Server-Sent Events (SSE), WebSockets,

real-time updates, interactive web technologies, modern web development.

I. INTRODUCTION

While in the past, websites provided users with mostly static content, today the displayed

content changes right before the user's eyes without them having to do anything. Static pages

have been replaced by web applications, whose content users no longer just read, but create.

One of the important features of modern web applications is real-time communication. Its

goal is to ensure that the content displayed to the user is continuously updated as needed, or

that new data is delivered to the user regularly. This includes, for example, online games where

multiple players need to synchronize data, chat applications where users can communicate with

each other, or possible live audio/video broadcasting.

Real-time communication technologies such as WebSocket protocol or Server-sent events

(SSE) offer many advantages in the web environment. For example, more efficient

communication between the server and the client, or improved synchronization between users

of a web application. Despite the existence of these technologies, there are still applications that

do not use these technologies and instead use older techniques such as Short polling or Long

polling.

The choice of suitable technology to execute the finished product is a component of web

application development. Their choice depends on the specific situation and needs of the given

project, while over time it is necessary to update, change, and add new technologies to ensure

continuity in development and, finally, to bring the best possible experience to users when using

applications on the Internet.

II. TRADITIONAL MODEL OF COMMUNICATION

A. Client-server

The basic concept of this communication is sending data between devices that are connected

through a network based on client-server model [1]. This fundamental interaction between a

Peter Bobka, University of Zilina, Zilina, Slovakia (e-mail: peter.sevcik@fri.uniza.sk)

Ján Janech, University of Zilina, Zilina, Slovakia (e-mail: jan.janech@fri.uniza.sk)

Patrik Hrkút, University of Zilina, Zilina, Slovakia (e-mail: patrik.hrkut@fri.uniza.sk)

Central European Researchers Journal, Vol.10 Issue 2

CERES ©2024 71

client and a server forms the basis for delivering content and services over the internet. Regular

client-server communication employs traditional models that enable data exchange using HTTP

protocols.

Communication between the client and server is facilitated by the Hypertext Transfer

Protocol (HTTP), a stateless protocol that defines the format and transmission of messages.

HTTPS, the secure variant of HTTP, incorporates encryption through Transport Layer Security

(TLS) to ensure data confidentiality and integrity during transmission. Data exchanged between

clients and servers is typically structured using formats like HTML, JSON, or XML. JSON is

widely used in modern web applications due to its lightweight and easily parsable structure.

The process of communication involves the client sending an HTTP request to the server,

specifying the required resource using methods such as GET, POST, PUT, or DELETE. The

server processes the request, performing necessary computations or retrieving data from

databases, and then sends an HTTP response containing the requested resource or an

appropriate status code indicating the outcome of the request.

The client represents the user’s device, typically running a web browser or application. It

serves as the interface through which users interact with the server, generating requests based

on user actions such as clicking links or submitting forms. The server is a powerful computing

entity that processes client requests. Servers host resources such as web pages, APIs, and

multimedia content.

HTTP’s stateless nature means that each request from the client is independent and unrelated

to previous requests. While this simplifies server design, it necessitates additional mechanisms

such as cookies or sessions to maintain state information when required. Regular client-server

communication often follows a synchronous pattern, where the client waits for the server’s

response before proceeding. This ensures that the client has the most up-to-date information but

can lead to latency issues if the server response is delayed. Reliability in communication is

ensured through protocols like Transmission Control Protocol (TCP), which underpins HTTP.

TCP guarantees that all packets of data are delivered in order and without loss, making it

suitable for applications where data integrity is critical.

This method of communication is not suitable for creating real-time applications, because

every time the content changes, even the smallest one, it requires sending a request to the server

and the server returns the entire newly generated web page. Such communication is

inappropriate in real-time applications and, moreover, communication can only be initiated by

the client, which does not meet the requirements of real-time applications at all, because the

changed data from other clients does not reach the client immediately.

III. REAL-TIME COMMUNICATION

In the case of web applications in which multiple users collaborate, it is necessary to

synchronize data or displayed content between them. A typical example would be a chat,

through which people on the Internet can communicate with each other. After adding a message,

it is necessary to save it in the database and deliver it to the recipient. In principle, it is necessary

to ensure that after changes are made on the server side, the data displayed to the user on the

client side is updated.

A. AJAX

According [2] AJAX is defined as “Asynchronous JavaScript and XML (AJAX) is a web

application development technology in which an application retrieves data from a server by

sending asynchronous HTTP requests and uses the new data to update relevant parts of the page

without having to reload the entire page.”

Central European Researchers Journal, Vol.10 Issue 2

72 CERES ©2024

In [3], the author describes AJAX technology in the context of the era known as "Web 2.0",

in which web applications are beginning to function more like desktop applications.

The loading of data that occurs asynchronously in the background of the displayed page in

the web browser during the use of the application has prompted the emergence of frameworks

for creating so-called Single-page applications (SPA). Since updating the content displayed to

the user is no longer conditional on loading the entire page, the total amount of data that needs

to be loaded from the server is also reduced. Static websites are being replaced by modern,

dynamic, interactive web applications.

AJAX is more suitable for creating real-time applications because it allows only the transfer

of data that has changed, and in a structured form. Unfortunately, like the client-server

communication model, communication can only be initiated by the client, so immediate data

exchange is also not possible, and the client is dependent on synchronously querying the server

for changes.

B. Short polling and long techniques

Displaying current data can also be achieved in the usual way, which consists of sending

HTTP requests and responses between the client and the server. In combination with AJAX

technology, data can be loaded from the server while the user is working with the application,

and the displayed data can be updated as needed.

The first described method is a technique called Short polling, which is based on regularly

retrieving data from the server. The client regularly sends a request for new data to the server.

If the server contains new data, it sends it back to the client in a response. Otherwise, it sends

an empty response. When the client receives new data, it displays it to the user. The problem is

that it is not possible to clearly determine how often the data should be retrieved from the server.

Frequent retrieval of data ensures that the user sees the latest data. However, this may mean

that the server responds to many requests with an empty message. Their processing can be seen

as redundant work for the server. Short polling is therefore not a very efficient solution.

Fig. 1 Scheme of Short and long polling communication

Central European Researchers Journal, Vol.10 Issue 2

CERES ©2024 73

The second technique, called long polling, differs in how the server handles requests for new

data sent by the client. If no new data has been received since the server last processed the

request, the server temporarily stores the request. Any requests for new data that are stored in

this way are only responded to by the server when new data is available. [4]

C. Server-Sent Events (SSE)

SSE is a technology that allows data to be sent from the server when the server deems it

necessary. A stable connection is established between the client and the server, within which

all communication takes place. The connection is active for the entire time the server is sending

data. The main advantage is low response time with the possibility of scaling with increasing

demands on the number of active connections. [5]

Server-Sent Events (SSE) are particularly good for scenarios requiring real-time one-way

communication from the server to the client. In the context of content-heavy applications like

newsfeeds or social media platforms, SSE ensures that users receive the latest data efficiently

without requiring constant page refreshes or manual interactions. By reducing overhead

compared to traditional polling, SSE enhances user experience while maintaining server

performance.

Fig. 2 Scheme of Server-sent events communication

D. WebSocket protocol

The WebSocket protocol, like SSE technology, is used in applications that support real-time

communication. In both cases, a stable connection is established between the client and the

server during communication. The WebSocket protocol differs in principle in that

communication within the established connection can be bidirectional – data can be sent by

both the client and the server. The same functionality can be achieved in the case of SSE by

Central European Researchers Journal, Vol.10 Issue 2

74 CERES ©2024

combining it with AJAX technology. SSE is a suitable alternative to the WebSocket protocol.

The disadvantage is the limited number of active connections within the browser and support

for sending messages only from the server. On the other hand, the WebSocket protocol creates

a two-way communication channel between the client and the server, supports many

connections within the browser, and supports sending binary data. [6]

Fig. 3 Scheme of WebSocket communication

Lifecycle of WebSocket communication

The life cycle of a connection to a WebSocket server begins when the client initiates the

connection via an HTTP request and ends when the client disconnects. Within a given

connection, it is possible to connect to communication channels through which data is sent in

the form of events. On the client side, functionality is defined is executed after a specific event

is captured. Because the connection between the client and the server is two-way, events can

be sent from the server to the client side and vice versa via channels.

In addition to basic functionality, the library provides the ability to monitor everything that

happens within the communication via the WebSocket server, either through a graphical interface

or in the console. [5]

Event

An event represents some information sent as part of a communication that can be received

by the user and then acted upon. It has a name, a communication channel through which the

event is sent, and can contain additional data. Unless the developer explicitly sets the data

structure, the event is sent along with a list of class attributes marked as public.

Central European Researchers Journal, Vol.10 Issue 2

CERES ©2024 75

Channels

As mentioned, events are broadcast over a specific communication channel. Each of them

has its own name, which is used when defining events and connecting on the client side.

WebSocket allows you to use 3 types of communication channels:

• Public channel

• Private channel

• Presence channel

The first type of communication channel is the Public channel. Any user of the application

who has successfully established a connection to the WebSocket server can connect to this type

of channel and respond to events sent through it. No authentication or authorization process is

required.

Another type is the Private channel. The process of connecting to this type of communication

channel is carried out via a classic HTTP request sent by the client. It requires that the user be

authenticated. In addition, the server checks whether the user is authorized to connect to the

given channel and either allows or denies the connection accordingly.

The last type of communication channel is the presence channel. In principle, it works

similarly to the private channel. It provides the ability to send events through it and perform the

authorization process for users who connect to it. In addition, it offers information about the

users connected to this channel.

If the authorization check is successful and the client can successfully connect to the channel,

it is provided with a list of currently connected users. In addition, the client has the option to

respond to connecting with a new client or disconnecting a connected client.

IV. COMPARISON OF SHORT/LONG POLLING, SERVER-SENT EVENTS, AND WEBSOCKETS

Each method has distinct advantages, limitations, and suitable use cases. Below is a

comprehensive comparison of these technologies.

Short Polling is one of the simplest methods for fetching updates from a server. The client

periodically sends HTTP requests to the server at fixed intervals, querying for new data. If there

is no new data, the server responds with an empty response. This method is easy to implement

and widely supported, working with any HTTP-compliant server or client. However, it is

inefficient due to frequent requests, even when no new data is available, which increases server

load and network traffic, especially with many clients. Short Polling is best suited for

applications with infrequent updates or where simplicity is prioritized over performance.

Long Polling improves upon Short Polling by keeping the connection open until new data is

available. The client sends an HTTP request, and the server holds the request open until it has

new data to send. This approach reduces redundant requests compared to Short Polling and

provides near real-time updates. However, it requires maintaining open connections, which

increases server memory usage, and connection timeouts may occur, requiring re-establishment

of connections. Long Polling is commonly used in chat applications or notification systems

where updates are frequent but not constant.

Server-sent Events allow the server to push updates to the client over a single, long-lived

HTTP connection. Data is sent as events, making it suitable for applications requiring one-way

communication. SSE is efficient for one-way data flow from server to client, with built-in

reconnection mechanisms and a simplified implementation compared to WebSockets for one-

way updates. However, it is limited to text-based data, requiring encoding for binary data, and

lacks built-in support for bi-directional communication. SSE is ideal for real-time dashboards,

live feeds, or notification systems where updates flow from server to client.

Central European Researchers Journal, Vol.10 Issue 2

76 CERES ©2024

The WebSocket protocol enables full-duplex communication between the client and server

over a single connection. It establishes a persistent connection, allowing data to flow in both

directions with minimal latency. WebSockets are ideal for bi-directional communication,

offering low latency and efficient use of network resources, with support for both text and

binary data. However, they are more complex to implement and manage compared to SSE or

polling, and they require modern browsers and WebSocket-compatible servers. WebSockets

are particularly suitable for real-time multiplayer games, collaborative tools, or any application

requiring interactive, two-way communication.

TABLE I

COMPARISON OF ALL COMMUNICATION TYPES

Feature Short Polling Long Polling Server-Sent Events (SSE) WebSockets

Communication One-way (client->server) One-way (client->server) One-way (server->client) Bi-directional

Connection Persistence No Partial Yes Yes

Latency High Medium Low Very Low

Efficiency Low Medium High High

Binary Data Support No No No (requires encoding) Yes

Ease of Implementation High Medium Medium Low

E. Choosing the Right Technology

The choice of technology depends on the application's requirements. Short Polling is suitable

for simple applications with low-frequency updates. Long Polling is a better choice when

updates are more frequent, but simplicity remains a priority. SSE is an excellent option for real-

time one-way updates, especially when text-based data is sufficient. WebSockets are ideal for

interactive, bi-directional communication where performance is critical. Each of these

technologies has a unique role in real-time web communication, and understanding their

strengths and limitations helps in making suitable architectural decisions.

V. CONCLUSION

Real-time communication has become an integral part of modern web applications, enabling

dynamic and interactive user experiences. This paper examined various technologies, including

Short Polling, Long Polling, Server-Sent Events (SSE), and WebSockets, each offering unique

capabilities tailored to specific application needs. While Short and Long Polling provide

simpler implementations, their inefficiencies limit their suitability for real-time demands. SSE

and WebSockets, in contrast, offer low-latency, scalable solutions for one-way and bi-

directional communication, respectively.

The choice of technology depends on the application's requirements, such as the need for

real-time updates, communication directionality, and performance considerations. WebSockets

are ideal for interactive and resource-intensive scenarios like multiplayer games and

collaborative tools, while SSE remains a robust choice for one-way updates in dashboards and

notification systems.

As web applications continue to evolve, developers must carefully evaluate the trade-offs of each

technology to deliver efficient, secure, and reliable solutions. The integration of real-time

communication technologies will remain essential to meet user expectations in an increasingly

connected digital environment.

Central European Researchers Journal, Vol.10 Issue 2

CERES ©2024 77

REFERENCES

[1] Client-Server Overview, Available online, Accessed 05/07/2024, https://developer.mozilla.org/en-

US/docs/Learn_web_development/Extensions/Server-side/First_steps/Client-Server_overview

[2] Ajax - MDN Web Docs Glossary: Definitions of Web-related terms. Available online, Accessed

05/06/2024 https://developer.mozilla.org/en-US/docs/Glossary/AJAX.

[3] Anthony T. Holdener. Ajax: The Definitive Guide. O’Reilly Media, Inc., 2008. ISBN: 978-0-596-

52838-6.

[4] HTTP Long Polling - What it is and when to use it. Available online, Accessed 08/06/202,

https://ably.com/topic/long-polling.

[5] An introduction to Server-Sent Events: A WebSockets alternative ready for another look. Available

online, Accessed 05/06/2024. https://ably.com/topic/server-sent-events.

[6] WebSockets vs Server-Sent Events: Key differences and which to use in 2024. Available online,

Accessed 05/06/2024, https://ably.com/blog/websockets-vs-sse.

Central European Researchers Journal, Vol.10 Issue 2

78 CERES ©2024

	Real-Time Communication in Modern Web Applications: Techniques and Comparisons

